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1. Introduction

The inverse scattering problem for acoustic waves, which consists in

recovering the shape of a scatterer from the far-field pattern of the scat tered

field, forms the basis of a wide variety of areas in the engineering sciences

such as remote sensing, nondestructive testing and imaging etc., and for this

reason has been the object of study by scientists in a number of diverse

disciplines, Rapid progress in this field has been made since the early

seventies, and a survey of these results can be found in the papers by

Colton[4] and Sleeman[12]. However, nearly all intensive efforts in this

field are devoted to the cases of R and R . It has been noticed that

in some situations, for instance in a finite depth ocean, the remote sensing

and imaging problems will lead to an inverse scattering problem in a special

space instead of R~ and R3. In the homogeneous finite depth ocean, Gilbert

and Xu[8] showed that the "propagating" far-field pattern can only carry

the information from the N+1 propagating modes; here N is the largest

'This work is supported in part by Sea Grant NASGAA-D-SG040.



integer less than �kh � vr!/2'. This loss of information omkes this problem

different from that in whole space case in the way that the far-field pattern

operator is not injective.

Before we can describe this non-injective property of the far-field pat-

tern more precisely, we need to give a formulation of the corresponding

direct problem, that is of the exterior boundary value problem for the time

harmonic acoustic scattering by a soft object.

Let R> � �   x,z!; x =  z»zi! c R,O < z < h! be a region corre-

sponding to the finite depth ocean, where h is the ocean depth . Let 0 be

an object imbedded in R>, which is a bounded, connected domain with C

boundary 80 having an outward unit normal v. If the object has a sound

soft boundary 80, an incoming wave u', which is incident on 80, will be

scattered to produce a propagating wave u' as well as its far-field pattern.

This problem can be formulated as a Dirichlet boundary value problem for

the scattering of time-harmonic acoustic waves in 0,:= Rf, $ 0, namely to

find a solution u E C  R~ $ 5! 0 C Rf, $ 0! to the Helmholtz equation

&3 u + k u = 0, iii Rt, ! 0,

such that u satisfies the boundary conditions

u=0, asz=O,

�.4!u=O, one.

Here k is a positive constant known as the wave number, and u = u'+ u',

where n' and ii' are the incident  entire! wave and the scattered wave







2 Injective theorem of far-Beld pattern op-
erator

a
' x,z! =   + !G z, ,l x- l!g <, !«<,

OA 8vg
�.1!

where ImA ! 0 and g  ,  ! satisfies

g+  IC + AS!g = -2u'. � 2!

Here,
  OGICg:= 2 j' gdo,
an Bvg

Sg:= 2 Gg«.
an

�.3!

�.4!

 I + K + AS! is invertible for any k ! 0 and its inverse is a bounded

linear operator in L~ M!, denoted by  I+ IC + AS! '.

For r =~ x ~! ~   I=: r', we can expand G z,  , ~ x �   I! in the form of a

normal mode representation

OO OQ

G z, ,I x �   ~! = � P P "," H' ka r!J  ka ~'!
4.=o =0 II 4 [f'

[cos m8! cos m8'! + sin m8!sin m8'!]. �.5!

In view of the asymptotic behavior of H '  ka�r!, we can conclude that u'

has an asymptotic expression

u' x, z! = � e ' Q  ! > e' ' "P� z!
2h �0 xka�r

In view of [14],[9], we can represent the scattered wave u' in the form of

combined single and double layer potential:



OQ
0 1

[g q   � + A!P�  ,'! J  ka�r'!cosm 8 � 8'!da'j + 0  � >!, � !
an Bv rr

where eo � � 1, E = 2 for m ! 1.

Here a natural way to define the far-field pattern operator is to define

F . Lz M! ~ Vw by

OO
a Fg! Hz,k,!:= Q p� z! Q e /   � + A!p� j! 1  la�r'!cosm I! � 8'!da

n,=O m=0 an v

�.7!

We know that

:=   � + A![P� i,'! J  ka�r'!cosmic],

:=   � + A![4!�  ! J  ka�r'!sinmej,

 r, 8, z! g 8Q, n. m = 0, 1, ..., oo,

are complete system in Lz BQ! [Gj. Let

WN BB!:= sp zn Q�',g~�; n = 0,1, ...,N; m = 0,1, ...,oo

and W> BB! be the orthogonal space to W'~ OQ! in Lz BA! under the usual

L  BA! inner product, then N F! = H > BQ!, here N F! is the null space

of the far-fietd pattern operator F. Hence, if g E. W~~ OQ!, then from �.6!

i.e. the propagating far-field pattern of u' is identical to zero.

Now we want to formulate a mapping from incoming waves to far-field

pattern, At this stage, we think of the object 0 as known and fixed. Let

A k, R>!:=  u; u x, z! = Q Q a�P� z! J  ka�r!e',  x, z! e R>!
a=O m= � cx

�,10!



for any u' 6 A k, R~!, denote u> � � u' ~an which is a continuous function

on OQ. Since  I + K + AS! is invertible for any k > 0, we can express

g C L' M! as

g x,z! = � 2 I+ Ii'+ AS! 'uz,  x, ! E 8O.

Combining �.7! and �.10!, we define a mapping Fan A k, R>! ~ V by

Fanu':= F o  I + Ii + AS!   � 2uI,!. � ]2!

Let

A N, BB!:= {u' c A k, R,!,  I + I~ + AS! 'u,' E W~ BQ!!, �.13!

We call  u'! an equivalent class solution.

Define

Ilu'llaw -= 1 I+ Ii + AS! 'ub I' «'
an

Ag % 80!  u CA k R!!!  I + K + AS! u! g W~ M! j! � 14!

then we can see from �.9! that .V F»! = A> X, BA!.

Definition 1: Let u'�u2 ~ A k, R,! be two incoming waves, we say

that u~ is equivalent to u~ if u', � u2 ~ Aq JV, BO!, which is denoted by

uI ug.

Let  u'! be the equivalent class under this equivalent relation ~, then

for any given far-field pattern f C R Fan!, the range of Fan, there exists

an equivalent class Ju'J, such that for any c lement in the class,



then we call u' C A k, Rz! a minimal norm solution of integral equation

�.15! if

Fanu' = f

such that

u']lan = inf I/u'Ilaw

Theorem 2.1 If u' C A N, BA!, such that Fanu' = 0, then

u'=0, one.

Proof: u' 6 A N,BB!, so g:=  I + IC + AS! 'u> E W~ BQ!. We can

represent Fgnu' as

 F» '! e,.! = F g = g g ~ W. .!
v=0 re=0

f   � + A�. t,'! J~ k~.r'!«s~ ~ � ~'!g  ~ !« = 0~
aA Bv

 8, z! C [0,2m] x [0, h].

It follows that

f
a

  � + A!g' �gda = 0, i = I, 2; n = 0, I, ..., ¹ m = 0, I, ..., oo. �.18!
M BV

Hence,g E W> M!, and g = 0 on BA . Consquuently, u> � �  I+K+ AS!g =

0 on BA.

Corollary Let  u'j be an equivalent class solution of �.15!, then there

is a unique uo E A Ã, BQ! such that any element of  u'! can be written as

= uo+u

where u> C A~ k, BO!.



Since

Ilu'IIan = II "o+ uillan

= / i  I+ Ii + AS! ' u', + u',! i' du
I  I+ Ii+ AS! u~ I der+4 I  I+Is + AS! u', I da

aa an

= Iluollan + llui lian

Ilu'IIan > Iluo Ilao «r any element of  u'!, from which we can conclude:

Theorem 2.2 Let fu'! be the equivalent class solution of �.15!, which

has a unique decomposite expression

u' = u' + u', ' 6 A N, Bn!, u,' E A  N, an!,

then uo is the minimal norm solution of �,14!.

Theorem 2u3 If u' E A N,OQ! such that the corresponding propa-

gating far-field pattern f 8, z! = 0, then the corresponding scattered wave

'= oinR',in.

Proof: Let u' ~ A N, 80!, such that

Fanu'= f =0.

By Theorem 2.1, u' = 0 on 8n. Hence u' = � u' = 0, on BO. The

uniqueness theorem of direct scattering problem  cf.[4]! follows

u'=o, inR

3 An alternative injective theorem

As pointing out in the last section, Fart ' .A k, Rt,! � + V+ is not an injection;

however, we can restrict FarI on a linear subspace related to OQ so that Fari



is injection in the linear subspace. One posible choice for this purpose is

to take A X,BO! as the domain of Fan. However, in order to formulate

Fan.

We first prove the following lemma:

Lemma 3.1: Let D be a bounded region in R>, such that k > 0 is not

a Dirichlet eigenvalue of D, then

p '�:= y� zjJ  ka�r!cosm8,

p �:= P� z! J  ka�r!ainm8, �.1!

m, n = 0, 1, ..., oo;  r,8, z! 6 BD.

are complete in L2 BD!.

Proof: It suffices to show that if g C Lz M!, such that

f g  r, =, 8! [P� z ! J  ka�r! cos m8! jda = 0,
an

= 8![4-  ! J- <' - ! '   8!jd = o
an

�-2!

� 3!

for m, n = 0, l, ..., oo. then g is identically zero on BA.

Let

u x, =!:= G z, 1,', I x �   ~!g r', ', 8'!dc
an

�.4!

then u � = 0 for ~ x I sufficiently large. But u is a solution to the Helmholtz

equation, so u = 0 in Rt, $ D by the analyticity of u. Moreover,

�.S!u+ � u = 2g, on BD,

10

the inverse problem in terms of single layer potentials, which has proved

efficient in R case in I10], we need to introduce a different restriction on



and

Btl Bt! 
  !+ �   � ! = � 2Ag, on BD.

BI/ BV

Since u+ � � 0, we know !M = 0 on BD. By assumption, k is not a Dirichlet

eigenvalue of D, so u = 0 in D. It follows that

g=   !=0, onBD.
1 Bt  + Btl

BV BU

Now we can represent the solution to the exterior Dirichlet problem in

the form of an acoustic single-layer potential

where D is an auxiliary region contained in O.

The potential �.6! solves the exterior Dirichlet problem provided that

the density P is a solution of the integral equation of the first kind

We introduce an integral mapping T: L~ BD! ~ L~ BQ! by

 Tp! xz!:= ,f G s, , ~ x �    !p  ,.f!d~,,  x, z! E BD

and write �.8! as

Since the boundary BO and the auxiliary surface BD are disjoint, the

integral operator T has a smooth kernel and therefore it is compact and can

not have a bounded inverse. Hence, the integral equation �.10! is ill-posed.

However, it is not our purpose to solve the direct problem by solving

�.10! . We are concerned with finding a linear subspace of A k, R>! so



co

+an ' = +0:= E E -4.  ! f 4.  !~- > - '!
=o =o

e � e'!y �.11!

where P E L~ OD! is a solution of �.10!. Let

U~ .= span{ p, p~; n = 0, 1, ..., N; rn = 0, 1, ..., oo!, I! �!,

U> .� � {u C L  OD!; uvdkr = 0 for any v E U~!,
BD

TUI r .= {u 6 L  BD!; u = TP; for some  I'r E UN!,

TU~ .� � {u 6 L~ BD!; u = TP; for some  t ~ U>!,

B N,an!:= {u e A~~,R,'!; u I»C ~T~,

BI N! DQ!:= {u 6 A I",Rt,!;u I»E TU~!

Theorexn 3.2

12

that the restriction of the far-fieM pattern operator' F to this subspace is

injec tive.

Here we remark that, similar to the case discussed in [10], equation

�.10! can have a solution only for those incoming waves u' for which the

scattered wave u' can be analytically extended into the exterior of 8D.

Some discussion related to this question may be found in [llj and [13j.

However, for an arbitrary region this is still an open problem.

Suppose for a region 0 and an incoming wave u' the equation �,10!

has a solution P, then we can write the far-field pattern operator. Fsz

A k, R>! ~ V in the form of



Proof: If u' E Bq N,OA!, then there is a function P E U~~ such that

Hense,

Fzoa' = Q Q c p� z! f p� j! J  la�r'!co m 8 � 8'!p  ,j!c cr = 0
~=0 m=O

due to the fact that

f P  ,  ![P�  ,"! J  ka�r'!cos m8'!]da = 0,
BD

f P  ,  ! [P� C! J~ ka�r'!sin mtI!'!Ido' = 0,
SD

form = 0, 1, ..., oo, n = 0, 1, ..., 1V.

Theorem 3.3 Suppose u' 6 A k, R>! and equation �.10! has a solution

in L~ BD!. If Eqnu' = 0 then u' C B!  X, M!.

Proof: For u' E A k, R~!, let P C L  BD! be a solution of �.10!, then

the scattered wave u' can be written as

u' x, = !: = G z,  , ] x �   [!Q  ,  !da.
SD

For r =] x [~ oo, we have

Fooa =p g'� z! p z   f y  , !qi�  !J  ka r'!coz m�H'!do!cozmH
0 mo SD

+[ P  , ![y  C! J  ka�r'!sin mH'!da]sinmH! = 0,
BD

0< CA, 0<8<2%.

!t follows that

f P  , C! [P�  ! J  ka r'!cos mH !]do' = 0,
&D



f P  ,  ![P�  !J  ka�r'!sin m8'!jdo = 0,
BD f or m = 0, 1, ..., oo, n = 0, 1, ..., X.

4 Inverse problem and its approximation so-
lutions

In view of Section 3, if u' is an incoming wave which admits a solution to

equation �.10!, i.e.

TP = -u', Q E L' BD!, �.1!

then we can introduce a far-field operator Fi . L  BD! ~ V as:

F>4:= Q p e p� zj f e� j! J  ka r'!coom� H � 8'!p  ,j!der, �.2]
n=0 m=0

0< z<h, 0<8<~~.

For a given far-field pattern. it leads to an integral equation of the first

kind, namely

Fio= f, oui', �.3!

where I':=  �, 8, z!; 0 < 8 < 2<,0 « - h j.

XVe know that Fi is an injection if k is not a Dirichlet eigenvalue of D

and the domain of Fi, D Fi!, is Uq. However, we can not expect in general

that a solution to �.3! exists.

Hence P 6 U> and u' ~so= � TP E TU~,

Corallary Suppose u' C A k, Bt,! and equation �.10! has a solution in

B N, BD!. If Fsnu' = 0, then u' = 0 and



One of the basic techniques to treat ill-posed integral equations of the

first kind is the classical Tikhonov functional

IIF4' � f ILAIL,~~r > + ol!4' III.  sa!. �4!

f f u'+u' f da
h

over all surfaces A in U; or, similar to [10], neglecting the Jacobean of r x!,

by minimizing

�.S!

After we have determined P and the corresponding approximation u'

for the scattered wave u', we look for the unknown surface BQ as the

location of the zeros of u' + u'. As suggested in the whole space case  cf.

[10],[2]!, we make an a-priori assumption on the unknown surfaces that if

U is the set of all possible surfaces, the elements of U can be described by

A:=  �, 0, zs! + r x!x; x C B!,

where B is the unit sphere and 0   zo   h. is a known constant, r x! belongs

to a compact subset

7':=  r E C'~ B!; 0 < r, x! < r x! < r2 x!!.

As usual, C'~ B!, 0   P < 1, denotes the space of uniformly Holder

continuously differentiable functions on the unit sphere furnished with the

appropriate Holder norm. The functions r> x! and rq x! in the definition

of V represent the a-priori information,

If BD is contained in the interior of the surface represented by r x'!x+

�,0, zo!,  for simplification, we sometimes just say by r x! !, we locate 8Q

by minimizing



over all functions r E V.

Combining �.4! and �.5!, we can formulate the inverse problem as

minimizing the functional:

p�' "'f >!:= IIF4' � fllL,  r! + olla'III,  ao!

+ !  TP+ u'! 0 r I~I,

here we use T to denote the single-layer acoustic potential

 TP! x, z!:= G z,  , ~ x �   ~!Pda;  x, z! E R> $ BD.
BD

That is, we seek P' 6 U~ and r' E V such that

p P', r; f, o! = M f, o!:= inf p p, r; f,n!; P 6 U~, r g V! �.7!

Now we establish existence of a solution to this nonlinear optimization

problem and investigate its convergent property as a ~ 0.

Theorem 4.1: The optimization formulation of the inverse scattering

problem has a solution.

Proof: Let  P�, r�! C U~ x V be a minimizing sequence, this means that

lim p P�, r�; f,a! = M f, a!.

Since V is compact, we may assume that r�~ r C U, os n ~ oo.

In view of

o'114'  la~ ao! � p y�, r�;f, n! ~ M f,o!, n ~ ocj.

and n ! 0, we know that the sequence ��j is bounded. Hence, we may

conclude that  P�! converges weal.ly to some P C U~ as n ~ oo. The fact

16



that F and T are compact operators follows that

Fg�~FP, n~oo,

and

 Ty�! o r� Z'4! o r,

But then from �.7! we know

114-Ili~ BD! 114 IIi2 BD!

This, together with the weak convergence, implies that

II<' 4'III.  BD! ~ 0 �. 10!

and P C U~ due to that U~ is a closed set. Hence

p P, r; f,u! = linx p e�, r; f,a! = M f,a!. �.11!

lim.U fo.a! = 0,

Proof: Let e ! 0 be arbitrary, then there <mists c> C U!v such that

Il TP + u'! o rill.'! s! < <.

Since the far-field pattern of the sca t tered wave depands continuously on the

boundary data of U', we can find a, constant clepanding on BQ, C = C BQ!,

such that

17

This completes the proof.

Theorem 4.2 Let u' E B X, BA! and fp be the corresponding far-field

pattern of a domain M which described by some r e V, then



In view of u' + u' = 0 on 80, we have

p P, r; f, n! < � + C! ll T< + u'! 0 r Ill a! + a'llWII r><aD!

< �+ C!e+ a IP ~ �+ C!e, a

From the above we have the following result.

Theorem 4.3: Let u' E B N,BA! be an incoming wave such that

u' ~soC TU~ and f be the corresponding far-field pattern of a domain 0

such that BB is described by a null sequence and let  P�, r�! be a solution

to the minimization problem with regularization parameter a�. Then there

exists a convergent subsequence of the sequence  r�!,. There is only a finite

number of limit points and every limit point represents a surface on which

the total field u'+ u' vanishes.

Proof: From the compactness of V, there exists a convergent subse-

quence of  r�! which converges to, say, r, Without loss of generality, we

may assume that r�~ r', aa n ~ oo. Let u denote the unique solution

to the direct scattering problem for the object with boundary A described

by r, then

 u" + u'! o r' = 0, on B. �.13!

18

Here we can thinl- of that u� is the solution to an exterior Dirichlet problem

with boundary values TP� IA�on the boundary A�described by r�.

Similar to the proof of Theorem 2,2 in [2]  also cf. [10]!, we can show

the following lemma:

Lemma: Let  r !, r be surfaces in R>3, r�~ r' a8 n ~ oo. Let u' be

an incoming wave,  u�] and u be scattered waves satisfying

 u + u'! 0 .. = 0, o» 8;



II ua + u'! + r III,2 a! ~ 0, as n ~ oo;

then for any closed set G in R>   D,

�. 14!

where D contained in the interior region of r' and II - II~ G is the maximun

norm over G.

From the Lemma we know the far-field patterns Fig�of u�converge

uniformly to the far-field pattern f" of u . hforeover, by Theorem 4.2,

I]Fig�� f]IL,~<r! ~ 0, kis n ~ oo.

Therefore, we can conclude that the far-field patterns concide

f =f'

u' x,z! =  TtItp! x,z!,  x, ! C R> $0,

Since f = Fjgp,

IIFi�~ � 0'0! III,2 r! = IIFi4' f IIL,' r! ~ 0 �.15!

it implies from �.2! that

f [P�� $0][P�  ! J  lpga�r'!cos m8'!]CD ~ 0,
8D

r [P�� $0][P�  ! J  J.a�r'!sin m8'!jda ~ 0,
BD

19

Recall that f is the far-field pattern with respect to an incoming wave

u' 6 B�V, OQ! such that TP = � u' admits a, solution $0 e UN, therefore,

we can represent the scattered wave as:



when n ~ oo.

It follows immediately that

�.16!

Consquently,

due to �.14! and �.16!, where G is any closed set in B~ $ D. In view of

�.17! and that u' + U' = 0 on A and A' t B~ g D, we can conclude that

u'+u'=0, on A. �.18!

90

If there existed an infinite number of different limit points, then by

the compactness of V we could find a convergent sequence of these limit

points. Thus it would follow that there was an arbitrary small region for

which u'+ U' is an eigenfunction for the Laplacean. This is impossible;

hence number of limit points are finite.
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